grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories
نویسندگان
چکیده
Hot, diffuse, relativistic plasmas such as sub-Eddington black hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model, and use it to show that our implementation runs optimally on both architectures. General Relativistic Implicit Magnetohydrodynamics: http://github.com/afd-illinois/grim
منابع مشابه
An HLLC Solver for Relativistic Flows
We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores the missing contact wave in the solution of the Riemann problem. The resulting numerical scheme is computationally efficient, r...
متن کاملNumerical solution of unsteady flow on airfoils with vibrating local flexible membrane
Unsteady flow separation on the airfoils with local flexible membrane (LFM) has been investigated in transient and laminar flows by the finite volume element method. A unique feature of the present method compared with the common computational fluid dynamic softwares, especially ANSYS CFX, is the modification using the physical influence scheme in convection fluxes at cell surfaces. In contr...
متن کاملUltra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma
We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...
متن کاملThe Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics
We present an extension of the Piecewise Parabolic Method to special relativistic fluid dynamics in multidimensions. The scheme is conservative, dimensionally unsplit, and suitable for a general equation of state. Temporal evolution is second-order accurate and employs characteristic projection operators; spatial interpolation is piece-wise parabolic making the scheme third-order accurate in sm...
متن کاملGeneral relativistic hydrodynamic flows around a static compact object in final stages of accretion flow
Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...
متن کامل